Connect with us

Infra

Transboundary cooperation in infrastructure operation generates economic and environmental co-benefits in the Lancang-Mekong River Basin – Nature Water

Published

on

Transboundary cooperation in infrastructure operation generates economic and environmental co-benefits in the Lancang-Mekong River Basin – Nature Water

  • Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Winsemius, H. C. et al. Global drivers of future river flood risk. Nat. Clim. Change 6, 381–385 (2016).

    Article 

    Google Scholar
     

  • Sadoff, C. W. & Grey, D. Beyond the river: the benefits of cooperation on international rivers. Water Policy 4, 389–403 (2002).

    Article 

    Google Scholar
     

  • Poff, N. L. et al. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat. Clim. Change 6, 25–34 (2016).

    Article 

    Google Scholar
     

  • Poff, N. L. & Schmidt, J. C. How dams can go with the flow. Science 353, 1099–1100 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poff, N. L. & Olden, J. D. Can dams be designed for sustainability? Dam design on the Mekong River can help to support water, energy, and fisheries needs. Science 358, 1252–1253 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Almeida, R. M. et al. Strategic planning of hydropower development: balancing benefits and socioenvironmental costs. Curr. Opin. Environ. Sustain. 56, 101175 (2022).

    Article 

    Google Scholar
     

  • Flecker, A. S. et al. Reducing adverse impacts of Amazon hydropower expansion. Science 375, 753–760 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmitt, R. J., Bizzi, S., Castelletti, A., Opperman, J. J. & Kondolf, G. M. Planning dam portfolios for low sediment trapping shows limits for sustainable hydropower in the Mekong. Sci. Adv. 5, eaaw2175 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmitt, R. J. P., Bizzi, S., Castelletti, A. & Kondolf, G. M. Improved trade-offs of hydropower and sand connectivity by strategic dam planning in the Mekong. Nat. Sustain. 1, 96–104 (2018).

    Article 

    Google Scholar
     

  • Schmitt, R. J. et al. Strategic basin and delta planning increases the resilience of the Mekong Delta under future uncertainty. Proc. Natl Acad. Sci. USA 118, e2026127118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Y., Zhao, J., Li, D. & Wang, Z. Effects of hydrologic conditions and reservoir operation on transboundary cooperation in the Lancang–Mekong River Basin. J. Water Resour. Plan. Manag. 145, 04019020 (2019).

    Article 

    Google Scholar
     

  • Giuliani, M. & Castelletti, A. Assessing the value of cooperation and information exchange in large water resources systems by agent-based optimization. Water Resour. Res. 49, 3912–3926 (2013).

    Article 

    Google Scholar
     

  • Pastor, A. V. et al. The global nexus of food–trade–water sustaining environmental flows by 2050. Nat. Sustain. 2, 499–507 (2019).

    Article 

    Google Scholar
     

  • Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I. & Levin, S. A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl Acad. Sci. USA 109, 5609–5614 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, B. et al. Dual water-electricity cooperation improves economic benefits and water equality in the Lancang-Mekong River Basin. Nat. Commun. 14, 6228 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hensengerth, O. Transboundary river cooperation and the regional public good: the case of the Mekong River. Contemp. Southeast Asia 31, 326–349 (2009).

    Article 

    Google Scholar
     

  • Chen, W. & Olden, J. D. Designing flows to resolve human and environmental water needs in a dam-regulated river. Nat. Commun. 8, 2158 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sabo, J. L. et al. Designing river flows to improve food security futures in the Lower Mekong Basin. Science 358, eaao1053 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Gao, J., Castelletti, A., Burlado, P., Wang, H. & Zhao, J. Soft-cooperation via data sharing eases transboundary conflicts in the Lancang-Mekong River Basin. J. Hydrol. 606, 127464 (2022).

    Article 

    Google Scholar
     

  • Momblanch, A., Connor, J. D., Crossman, N. D., Paredes-Arquiola, J. & Andreu, J. Using ecosystem services to represent the environment in hydro-economic models. J. Hydrol. 538, 293–303 (2016).

    Article 

    Google Scholar
     

  • Darby, S. E. et al. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity. Nature 539, 276–279 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Tangi, M., Bizzi, S., Schmitt, R. & Castelletti, A. Balancing sediment connectivity and energy production via optimized reservoir sediment management strategies. Water Resour. Res. 59, e2022WR034033 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ran, L. S. & Lu, X. X. Cooperation is key to Asian hydropower. Nature 473, 452–452 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haefner, A. Regional environmental security: cooperation and challenges in the Mekong subregion. Glob. Change Peace Secur. 25, 27–41 (2013).

    Article 

    Google Scholar
     

  • Kondolf, G. M. et al. Save the Mekong Delta from drowning. Science 376, 583–585 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kondolf, G. M. et al. Changing sediment budget of the Mekong: cumulative threats and management strategies for a large river basin. Sci. Total Environ. 625, 114–134 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suong, T. Mekong basin stirs up region: Thai water diversion project could have mega risks. Mekong Eye https://earthjournalism.net/stories/mekong-basin-stirs-up-region-thai-water-diversion-project-could-have-mega-risks (2016).

  • Fischer, G., Tubiello, F. N., Van Velthuizen, H. & Wiberg, D. A. Climate change impacts on irrigation water requirements: effects of mitigation, 1990–2080. Technol. Forecast. Soc. Change 74, 1083–1107 (2007).

    Article 

    Google Scholar
     

  • Gao, J., Zhao, J. & Wang, H. Dam-impacted water–energy–food nexus in Lancang-Mekong River Basin. J. Water Resour. Plan. Manag. 147, 04021010 (2021).

    Article 

    Google Scholar
     

  • Tickner, D. et al. Managing rivers for multiple benefits—a coherent approach to research, policy and planning. Front. Environ. Sci. 5, 4 (2017). 2017.

    Article 

    Google Scholar
     

  • Bhagabati, S., Kawasaki, A., Babel, M., Rogers, P. & Ninsawat, S. A cooperative game analysis of transboundary hydropower development in the lower Mekong: case of the 3S sub-basins. Water Resour. Manag. 28, 3417–3437 (2014).

    Article 

    Google Scholar
     

  • Basin Development Strategy for the Mekong River Basin 2021–2030 (Mekong River Commission, 2021); https://reliefweb.int/report/cambodia/basin-development-strategy-mekong-river-basin-2021-2030-mrc-strategic-plan-2021-2025

  • Gao, J., Zhao, J., Hou, P. & Wang, H. Effects of ENSO on hydrological process and hydropower across the Lancang‐Mekong River Basin. River 1, 172–188 (2022).

    Article 

    Google Scholar
     

  • Siala, K., Chowdhury, A. K., Dang, T. D. & Galelli, S. Solar energy and regional coordination as a feasible alternative to large hydropower in Southeast Asia. Nat. Commun. 12, 4159 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Myerson, R. B. Effectiveness of electoral systems for reducing government corruption: a game-theoretic analysis. Games Econ. Behav. 5, 118–132 (1993).

    Article 

    Google Scholar
     

  • Yu, Y., Tang, P., Zhao, J., Liu, B. & Mclaughlin, D. Evolutionary cooperation in transboundary river basins. Water Resour. Res. 55, 9977–9994 (2019).

    Article 

    Google Scholar
     

  • State of the Basin Report 2010 (Mekong River Commission, 2010).

  • Spink, A., Sparks, R. E., Van Oorschot, M. & Verhoeven, J. T. Nutrient dynamics of large river floodplains. Regul. Rivers Res. Manag. 14, 203–216 (1998).

    Article 

    Google Scholar
     

  • Jha, S., Das, J. & Goyal, M. K. Assessment of risk and resilience of terrestrial ecosystem productivity under the influence of extreme climatic conditions over India. Sci. Rep. 9, 18923 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdullah, A., Kobayashi, H., Matsumura, I. & Ito, S. World rice demand towards 2050: impact of decreasing demand of per capita rice consumption for China and India. In Japan and East Asian Regionalism (eds Hassan, A. & Akhir, M. N. M.) 1–17 (University of Malaya, 2008).

  • Liu, B., Liao, S., Cheng, C., Chen, F. & Li, W. Hydropower curtailment in Yunnan Province, southwestern China: constraint analysis and suggestions. Renew. Energy 121, 700–711 (2018).

    Article 

    Google Scholar
     

  • Lancang-Mekong Cooperation. Joint statement on enhancing sustainable development cooperation of the Lancang-Mekong countries. The Sixth Lancang-Mekong Cooperation Foreign Ministers’ Meeting (Ministry of Foreign Affairs of the People’s Republic of China, 2021).

  • Lancang-Mekong Cooperation. Joint statement on production capacity cooperation among Lancang-Mekong countries. The First Lancang-Mekong Cooperation Leaders’ Meeting (Ministry of Foreign Affairs of the People’s Republic of China, 2016).

  • Full text of Vientiane Declaration of the Third Mekong-Lancang Cooperation (MLC) Leaders’ Meeting. Mekong-Lancang Cooperation http://www.lmcchina.org/eng/2020-08/25/content_41449868.html (2020).

  • Joint Press Communiqué of the Seventh Mekong-Lancang Cooperation Foreign Ministers’ Meeting China News (5 July 2022); http://hk.ocmfa.gov.cn/eng/xjpzxzywshd/202208/t20220815_10743231.htm#:~:text=The%20Seventh%20Mekong%2DLancang%20Cooperation%20(MLC)%20Foreign%20Ministers’,Union%20of%20Myanmar%20and%20H.E

  • Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).

    Article 

    Google Scholar
     

  • De Stefano, L., Petersen-Perlman, J. D., Sproles, E. A., Eynard, J. & Wolf, A. T. Assessment of transboundary river basins for potential hydro-political tensions. Glob. Environ. Change 45, 35–46 (2017).

    Article 

    Google Scholar
     

  • Munia, H. et al. Water stress in global transboundary river basins: significance of upstream water use on downstream stress. Environ. Res. Lett. 11, 014002 (2016).

    Article 

    Google Scholar
     

  • Liu, J. et al. Nexus approaches to global sustainable development. Nat. Sustain. 1, 466–476 (2018).

    Article 

    Google Scholar
     

  • Zhao, R. J. The Xinanjiang model applied in China. J. Hydrol. 135, 371–381 (1992).

    Article 

    Google Scholar
     

  • Liang, X., Wood, E. F. & Lettenmaier, D. P. Surface soil moisture parameterization of the VIC-2L model: evaluation and modification. Glob. Planet. Change 13, 195–206 (1996).

    Article 

    Google Scholar
     

  • Han, Z., Long, D., Fang, Y., Hou, A. & Hong, Y. Impacts of climate change and human activities on the flow regime of the dammed Lancang River in Southwest China. J. Hydrol. 570, 96–105 (2019).

    Article 

    Google Scholar
     

  • Li, D., Zhao, J. & Govindaraju, R. Water benefits sharing under transboundary cooperation in the Lancang-Mekong River Basin. J. Hydrol. 577, 123989 (2019).

    Article 

    Google Scholar
     

  • Intralawan, A., Wood, D., Frankel, R., Costanza, R. & Kubiszewski, I. Tradeoff analysis between electricity generation and ecosystem services in the Lower Mekong Basin. Ecosyst. Serv. 30, 27–35 (2018).

    Article 

    Google Scholar
     

  • Smith, M. & Steduto, P. Yield Response to Water: The Original FAO Water Production Function FAO Irrigation and Drainage Paper, 6–13 (FAO, 2012).

  • Rice and narrowing the yield gap. FAO https://riceforafrica.net/wp-content/uploads/2022/07/fao_19.pdf (2004).

  • Do, P. et al. Exploring synergies in the water-food-energy nexus by using an integrated hydro-economic optimization model for the Lancang-Mekong River basin. Sci. Total Environ. 728, 137996 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stewart-Koster, B., Olden, J. D. & Gido, K. B. Quantifying flow–ecology relationships with functional linear models. Hydrol. Sci. J. 59, 629–644 (2014).

    Article 

    Google Scholar
     

  • Campbell, I. & Barlow, C. Hydropower development and the loss of fisheries in the Mekong River Basin. Front. Environ. Sci. 2020, e566509 (2020).

    Article 

    Google Scholar
     

  • Brune, G. M. Trap efficiency of reservoirs. Eos 34, 407–418 (1953).

  • Bussi, G. et al. Impact of dams and climate change on suspended sediment flux to the Mekong delta. Sci. Total Environ. 755, 142468 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Treaty Database of the People’s Republic of China. Ministry of Foreign Affairs of the People’s Republic of China (2000).

  • Shadkam, S., Ludwig, F., van Vliet, M. T., Pastor, A. & Kabat, P. Preserving the world second largest hypersaline lake under future irrigation and climate change. Sci. Total Environ. 559, 317–325 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jägermeyr, J., Pastor, A., Biemans, H. & Gerten, D. Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation. Nat. Commun. 8, 15900 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dataset on the Dams of the Irrawaddy, Mekong, Red and Salween River Basins (WLE, 2017).

  • Assessment of Basin-Wide Development Scenarios (Mekong River Commission, 2011).

  • Basin Development Strategy 2016–2020 (Mekong River Commission, 2016).

  • Brook, A., Kendrick, D. & Meeraus, A. GAMS, a user’s guide. ACM Signum Newsletter 23, 10–11 (1988).

    Article 

    Google Scholar
     

  • Madani, K. & Hooshyar, M. A game theory–reinforcement learning (GT–RL) method to develop optimal operation policies for multi-operator reservoir systems. J. Hydrol. 519, 732–742 (2014).

    Article 

    Google Scholar
     

  • Loucks, D. P. & van Beek, E. Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications (Springer, 2017).

  • Continue Reading