Connect with us

Fitness

Assessment of subclinical LV myocardial dysfunction in T2DM patients with diabetic peripheral neuropathy: a cardiovascular magnetic resonance study – Cardiovascular Diabetology

Published

on

Assessment of subclinical LV myocardial dysfunction in T2DM patients with diabetic peripheral neuropathy: a cardiovascular magnetic resonance study – Cardiovascular Diabetology

  • Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019;157: 107843.

    Article 
    PubMed 

    Google Scholar
     

  • van Dieren S, Beulens JW, van der Schouw YT, Grobbee DE, Neal B. The global burden of diabetes and its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil. 2010;17(Suppl 1):S3-8.

    PubMed 

    Google Scholar
     

  • Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5(1):41.

    Article 
    PubMed 

    Google Scholar
     

  • Forsblom CM, Sane T, Groop PH, Totterman KJ, Kallio M, Saloranta C, et al. Risk factors for mortality in Type II (non-insulin-dependent) diabetes: evidence of a role for neuropathy and a protective effect of HLA-DR4. Diabetologia. 1998;41(11):1253–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Margariti A. Peripheral neuropathy may be a potential risk of cardiovascular disease in diabetes mellitus. Heart. 2014;100(23):1823–4.

    Article 
    PubMed 

    Google Scholar
     

  • Brownrigg JR, Davey J, Holt PJ, Davis WA, Thompson MM, Ray KK, et al. The association of ulceration of the foot with cardiovascular and all-cause mortality in patients with diabetes: a meta-analysis. Diabetologia. 2012;55(11):2906–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pedrizzetti G, Claus P, Kilner PJ, Nagel E. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J Cardiovasc Magn Reson. 2016;18(1):51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart. 2014;100(21):1673–80.

    Article 
    PubMed 

    Google Scholar
     

  • Zulet P, Islas F, Ferrandez-Escarabajal M, Bustos A, Cabeza B, Gil-Abizanda S, et al. Diabetes mellitus is associated to high-risk late gadolinium enhancement and worse outcomes in patients with nonischemic dilated cardiomyopathy. Cardiovasc Diabetol. 2024;23(1):35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Li Y, Guo YK, Huang S, Shi R, Yan WF, et al. The adverse impact of coronary artery disease on left ventricle systolic and diastolic function in patients with type 2 diabetes mellitus: a 3.0T CMR study. Cardiovasc Diabetol. 2022;21(1):30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chamberlain JJ, Rhinehart AS, Shaefer CF Jr, Neuman A. Diagnosis and management of diabetes: synopsis of the 2016 American Diabetes Association Standards of Medical Care in Diabetes. Ann Intern Med. 2016;164(8):542–52.

    Article 
    PubMed 

    Google Scholar
     

  • Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance—2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing. J Cardiovasc Magn Reson. 2020;22(1):19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan WF, Xu HY, Jiang L, Zhang L, Guo YK, Li Y, et al. Early longitudinal changes in left ventricular function and morphology in diabetic pigs: evaluation by 3.0T magnetic resonance imaging. Cardiovasc Diabetol. 2023;22(1):6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou S, Zhang Z, Zhang Z, Gao Y, Li G, Lou M, et al. Evaluation of left ventricular systolic and diastolic function in subjects with prediabetes and diabetes using cardiovascular magnetic resonance-feature tracking. Acta Diabetol. 2022;59(4):491–9.

    Article 
    PubMed 

    Google Scholar
     

  • Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev. 2013;18(2):149–66.

    Article 
    PubMed 

    Google Scholar
     

  • Grigorescu ED, Lacatusu CM, Floria M, Mihai BM, Cretu I, Sorodoc L. Left ventricular diastolic dysfunction in type 2 diabetes-progress and perspectives. Diagnostics. 2019;9(3):121.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salvador DB, Gamba MR, Gonzalez-Jaramillo N, Gonzalez-Jaramillo V, Raguindin PFN, Minder B, et al. Diabetes and myocardial fibrosis: a systematic review and meta-analysis. JACC: Cardiovasc Imaging. 2022;15(5):796–808.

    PubMed 

    Google Scholar
     

  • Schannwell CM, Schneppenheim M, Perings S, Plehn G, Strauer BE. Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology. 2002;98(1–2):33–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ha JW, Lee HC, Kang ES, Ahn CM, Kim JM, Ahn JA, et al. Abnormal left ventricular longitudinal functional reserve in patients with diabetes mellitus: implication for detecting subclinical myocardial dysfunction using exercise tissue Doppler echocardiography. Heart. 2007;93(12):1571–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao Y, Zeng W, Cui Y, Kong X, Wang M, Yu J, et al. Increased myocardial extracellular volume assessed by cardiovascular magnetic resonance T1 mapping and its determinants in type 2 diabetes mellitus patients with normal myocardial systolic strain. Cardiovasc Diabetol. 2018;17(1):7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oka S, Kai T, Hoshino K, Watanabe K, Nakamura J, Abe M, et al. Effects of empagliflozin in different phases of diabetes mellitus-related cardiomyopathy: a prospective observational study. BMC Cardiovasc Disord. 2021;21(1):217.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li XM, Jiang L, Guo YK, Ren Y, Han PL, Peng LQ, et al. The additive effects of type 2 diabetes mellitus on left ventricular deformation and myocardial perfusion in essential hypertension: a 3.0 T cardiac magnetic resonance study. Cardiovasc Diabetol. 2020;19(1):161.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Yang ZG, Gao Y, Xie LJ, Jiang L, Hu BY, et al. Left ventricular subclinical myocardial dysfunction in uncomplicated type 2 diabetes mellitus is associated with impaired myocardial perfusion: a contrast-enhanced cardiovascular magnetic resonance study. Cardiovasc Diabetol. 2018;17(1):139.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Wang Y, Zhang Y, Li M, Zhang W, Zhou Y, et al. Association of peripheral neuropathy with subclinical left ventricular dysfunction in patients with type 2 diabetes. J Diabetes Complic. 2023;37(2): 108406.

    Article 
    CAS 

    Google Scholar
     

  • Claus P, Omar AMS, Pedrizzetti G, Sengupta PP, Nagel E. Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications. JACC Cardiovasc Imaging. 2015;8(12):1444–60.

    Article 
    PubMed 

    Google Scholar
     

  • Rumora A, Kim B, Feldman EL. A role for fatty acids in peripheral neuropathy associated with type 2 diabetes and prediabetes. Antioxid Redox Signal. 2022;37(7–9):560–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roustit M, Loader J, Deusenbery C, Baltzis D, Veves A. Endothelial dysfunction as a link between cardiovascular risk factors and peripheral neuropathy in diabetes. J Clin Endocrinol Metab. 2016;101(9):3401–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giannini C, Dyck PJ. Ultrastructural morphometric abnormalities of sural nerve endoneurial microvessels in diabetes mellitus. Ann Neurol. 1994;36(3):408–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung JO, Cho DH, Chung DJ, Chung MY. Association between diabetic polyneuropathy and cardiovascular complications in type 2 diabetic patients. Diabetes Metab J. 2011;35(4):390–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akasaka T, Yoshida K, Hozumi T, Takagi T, Kaji S, Kawamoto T, et al. Retinopathy identifies marked restriction of coronary flow reserve in patients with diabetes mellitus. J Am Coll Cardiol. 1997;30(4):935–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sorensen MH, Bojer AS, Broadbent DA, Plein S, Madsen PL, Gaede P. Cardiac perfusion, structure, and function in type 2 diabetes mellitus with and without diabetic complications. Eur Heart J Cardiovasc Imaging. 2020;21(8):887–95.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Y, Wang J, Ren Y, Yan WF, Jiang L, Li Y, et al. The additive effects of kidney dysfunction on left ventricular function and strain in type 2 diabetes mellitus patients verified by cardiac magnetic resonance imaging. Cardiovasc Diabetol. 2021;20(1):11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reboldi G, Krishnasamy R, Isbel NM, Hawley CM, Pascoe EM, Burrage M, et al. Left ventricular global longitudinal strain (GLS) Is a superior predictor of all-cause and cardiovascular mortality when compared to ejection fraction in advanced chronic kidney disease. PLoS ONE. 2015;10(5): e0127044.

    Article 

    Google Scholar
     

  • Baltzis D, Roustit M, Grammatikopoulou MG, Katsaboukas D, Athanasiou V, Iakovou I, et al. Diabetic peripheral neuropathy as a predictor of asymptomatic myocardial ischemia in type 2 diabetes mellitus: a cross-sectional study. Adv Ther. 2016;33(10):1840–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li XM, Shi R, Shen MT, Yan WF, Jiang L, Min CY, et al. Subclinical left ventricular deformation and microvascular dysfunction in T2DM patients with and without peripheral neuropathy: assessed by 3.0 T cardiac magnetic resonance imaging. Cardiovasc Diabetol. 2023;22(1):256.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishibashi Y, Matsui T, Takeuchi M, Yamagishi S. Glucagon-like peptide-1 (GLP-1) inhibits advanced glycation end product (AGE)-induced up-regulation of VCAM-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression. Biocheml Biophys Res Commun. 2010;391(3):1405–8.

    Article 
    CAS 

    Google Scholar
     

  • Bojer AS, Sorensen MH, Vejlstrup N, Goetze JP, Gaede P, Madsen PL. Distinct non-ischemic myocardial late gadolinium enhancement lesions in patients with type 2 diabetes. Cardiovasc Diabetol. 2020;19(1):84.

    Article 

    Google Scholar
     

  • Zhao W, Li K, Tang L, Zhang J, Guo H, Zhou X, et al. Coronary microvascular dysfunction and diffuse myocardial fibrosis in patients with type 2 diabetes using quantitative perfusion MRI. J Magn Reson Imaging. 2024. https://doi.org/10.1002/jmri.29296.

    Article 
    PubMed 

    Google Scholar
     

  • Continue Reading